
Undecidability of the Word Problem

Fanxin Wu

April 11, 2022

1 / 27

2 / 27

Presentation of a group

Let A be any set. The free group over A is the set of reduced word
in A under concatenation; a word is reduced if there is no
appearance of a−1a or aa−1 for a ∈ A.

Definition 1

Let R be a subset of F (A). 〈A | R〉 is the quotient of F (A) by the
normal subgroup generated by R. If G ' 〈A | R〉 where both A,R
are finite, then G is finitely presented.

3 / 27

Presentation of a group

Let A be any set. The free group over A is the set of reduced word
in A under concatenation; a word is reduced if there is no
appearance of a−1a or aa−1 for a ∈ A.

Definition 1

Let R be a subset of F (A). 〈A | R〉 is the quotient of F (A) by the
normal subgroup generated by R. If G ' 〈A | R〉 where both A,R
are finite, then G is finitely presented.

3 / 27

Presentation of a group

Examples:

1. 〈a, b | aba−1b−1〉 is the free abelian group in two generators.
We also write 〈a, b | aba−1b−1 = 1〉 or 〈a, b | ab = ba〉.

2. If G = 〈A | R〉 and H = 〈A′ | R′〉, then G ∗H := 〈A,A′ | R,R′〉
is called the free product of G and H. For example, 〈a, b | a2, b3〉
is the free product of Z/2Z and Z/3Z. It is also isomorphic to
PSL(2,Z). Every element in G ∗H is equivalent to a unique
reduced word g1h1 · · · gnhn.

4 / 27

The word problem

If G = 〈A | R〉 where A is finite, and there exists an algorithm that
decides whether a given word in A represents the trivial element in
G, then the word problem for G is decidable.

Facts:

1. This does not depend on the generating set A.

2. The word problem for free groups is decidable since every word
is equivalent to a unique reduced word.

3. If the words in R “do not overlap too much”, then the word
problem is decidable using Dehn’s algorithm.

4. There exists a finitely presented group whose word problem is
undecidable.

We need to make the notion of “algorithm” more precise.

5 / 27

The word problem

If G = 〈A | R〉 where A is finite, and there exists an algorithm that
decides whether a given word in A represents the trivial element in
G, then the word problem for G is decidable.

Facts:

1. This does not depend on the generating set A.

2. The word problem for free groups is decidable since every word
is equivalent to a unique reduced word.

3. If the words in R “do not overlap too much”, then the word
problem is decidable using Dehn’s algorithm.

4. There exists a finitely presented group whose word problem is
undecidable.

We need to make the notion of “algorithm” more precise.

5 / 27

The word problem

If G = 〈A | R〉 where A is finite, and there exists an algorithm that
decides whether a given word in A represents the trivial element in
G, then the word problem for G is decidable.

Facts:

1. This does not depend on the generating set A.

2. The word problem for free groups is decidable since every word
is equivalent to a unique reduced word.

3. If the words in R “do not overlap too much”, then the word
problem is decidable using Dehn’s algorithm.

4. There exists a finitely presented group whose word problem is
undecidable.

We need to make the notion of “algorithm” more precise.

5 / 27

The word problem

If G = 〈A | R〉 where A is finite, and there exists an algorithm that
decides whether a given word in A represents the trivial element in
G, then the word problem for G is decidable.

Facts:

1. This does not depend on the generating set A.

2. The word problem for free groups is decidable since every word
is equivalent to a unique reduced word.

3. If the words in R “do not overlap too much”, then the word
problem is decidable using Dehn’s algorithm.

4. There exists a finitely presented group whose word problem is
undecidable.

We need to make the notion of “algorithm” more precise.

5 / 27

Turing machine
Very roughly speaking, a Turing machine is a computer with
infinite memory and power. Slightly more mathematically, a Turing
machine consists of an infinitely long tape divided into cells, a
head that can read or write symbols on the tape, along with:

1. a finite set of possible states,

2. a finite set of allowed symbols,

3. a finite set of instructions that specify whether to halt/write a
symbol/move the head depending on the current state and the
current symbol the head is reading.

6 / 27

Computability

Given a Turing machine and a finite input (only finitely many cells
are not blank), we can run the machine according to the
instructions. It may or may not run forever. In case it halts, the
final configuration is called the output.

It is harmless to assume the only allowed symbols on the tape are
0, 1 and B (blank). Using binary expansion, an input/output can
be regarded as a natural number. This way a Turing machine can
be viewed as computing a partial function on natural numbers.

Definition 2

A function f : N→ N is called computable if there exists a Turing
machine that always halts and outputs f(n) (given input n).

7 / 27

Computability

Given a Turing machine and a finite input (only finitely many cells
are not blank), we can run the machine according to the
instructions. It may or may not run forever. In case it halts, the
final configuration is called the output.

It is harmless to assume the only allowed symbols on the tape are
0, 1 and B (blank). Using binary expansion, an input/output can
be regarded as a natural number. This way a Turing machine can
be viewed as computing a partial function on natural numbers.

Definition 2

A function f : N→ N is called computable if there exists a Turing
machine that always halts and outputs f(n) (given input n).

7 / 27

Computability

Definition 3

The class of partial recursive functions is the smallest class of
functions f : Nk → N for some k ≥ 1 that contains:

1. constant functions f(x1, ..., xk) = c,
2. successor function S(x) = x+ 1,
3. projections p(x1, ..., xk) = xi,

and closed under

1. composition,
2. primitive recursion, f(x+ 1) = g(x, f(x)),
3. minimizing operation, µf (x) = the least y s.t. f(x, y) = 0.

If moreover f is total, then it is called recursive.

8 / 27

Computability

Theorem

A function f : N→ N is computable iff it is recursive.

Thesis (Church-Turing)

1. Any two reasonable definitions of “computable functions” are
equivalent.
2. Moreover, they correctly capture the notion of algorithm.

Consequences:

1. Any reasonable variants of Turing machine are equivalent.

2. If a function is obviously computable by a real-life computer,
then it is computable.

9 / 27

Computability

Theorem

A function f : N→ N is computable iff it is recursive.

Thesis (Church-Turing)

1. Any two reasonable definitions of “computable functions” are
equivalent.
2. Moreover, they correctly capture the notion of algorithm.

Consequences:

1. Any reasonable variants of Turing machine are equivalent.

2. If a function is obviously computable by a real-life computer,
then it is computable.

9 / 27

Computability

Theorem

A function f : N→ N is computable iff it is recursive.

Thesis (Church-Turing)

1. Any two reasonable definitions of “computable functions” are
equivalent.
2. Moreover, they correctly capture the notion of algorithm.

Consequences:

1. Any reasonable variants of Turing machine are equivalent.

2. If a function is obviously computable by a real-life computer,
then it is computable.

9 / 27

Formulating the word problem

Let G = 〈A | R〉 be f.g (or more generally countably generated).
WLOG A ⊆ N, so a word in A is an element of N<ω :=

⋃
k≥1Nk;

we want to code it into a natural number.

Any reasonable bijections between N<ω and N are equivalent, e.g.,
lexicographical ordering, prime factorization, Chinese Remainder
Theorem...

We say that the word problem for G is decidable if the normal
subgroup generated by R is recursive in F (A), i.e., there is a
computable f : F (A)→ {0, 1} such that

f(w) =

{
1 w represents identity in G

0 otherwise

10 / 27

Formulating the word problem

Let G = 〈A | R〉 be f.g (or more generally countably generated).
WLOG A ⊆ N, so a word in A is an element of N<ω :=

⋃
k≥1Nk;

we want to code it into a natural number.

Any reasonable bijections between N<ω and N are equivalent, e.g.,
lexicographical ordering, prime factorization, Chinese Remainder
Theorem...

We say that the word problem for G is decidable if the normal
subgroup generated by R is recursive in F (A), i.e., there is a
computable f : F (A)→ {0, 1} such that

f(w) =

{
1 w represents identity in G

0 otherwise

10 / 27

Formulating the word problem

Let G = 〈A | R〉 be f.g (or more generally countably generated).
WLOG A ⊆ N, so a word in A is an element of N<ω :=

⋃
k≥1Nk;

we want to code it into a natural number.

Any reasonable bijections between N<ω and N are equivalent, e.g.,
lexicographical ordering, prime factorization, Chinese Remainder
Theorem...

We say that the word problem for G is decidable if the normal
subgroup generated by R is recursive in F (A), i.e., there is a
computable f : F (A)→ {0, 1} such that

f(w) =

{
1 w represents identity in G

0 otherwise

10 / 27

More computability
Definition 4

X ⊆ N is called recursive if the characteristic function on X is
computable. X is recursively enumerable if there exists a non-stop
Turing machine that lists the members of X (in any order!), or
equivalently X is the range of a computable function.

Examples:

1. A recursive set is recursively enumerable.

2. If both X and N \X are r.e., then X is recursive.

3. There exists a r.e. set that is not recursive, such as
{n | the n-th Turing machine halts with empty input}.

4. Consider a f.g. group G = 〈A | R〉. If the word problem for G is
decidable, then the normal subgroup 〈R〉F (A) generated by R in F (A) is
recursive, and by replacing R with 〈R〉F (A) we may assume R is
recursive. Therefore when discussing word problem we focus on
recursively presented groups. If R is recursive then 〈R〉F (A) is always r.e.

5. If G has a r.e. presentation, then it has a recursive presentation.

11 / 27

More computability
Definition 4

X ⊆ N is called recursive if the characteristic function on X is
computable. X is recursively enumerable if there exists a non-stop
Turing machine that lists the members of X (in any order!), or
equivalently X is the range of a computable function.

Examples:

1. A recursive set is recursively enumerable.

2. If both X and N \X are r.e., then X is recursive.

3. There exists a r.e. set that is not recursive, such as
{n | the n-th Turing machine halts with empty input}.

4. Consider a f.g. group G = 〈A | R〉. If the word problem for G is
decidable, then the normal subgroup 〈R〉F (A) generated by R in F (A) is
recursive, and by replacing R with 〈R〉F (A) we may assume R is
recursive. Therefore when discussing word problem we focus on
recursively presented groups. If R is recursive then 〈R〉F (A) is always r.e.

5. If G has a r.e. presentation, then it has a recursive presentation.
11 / 27

More computability

{(a1, ..., an) ∈ Zn | f(a1, ..., an) = 0} is recursive for any
f(x1, ..., xn) ∈ Z[x1, ..., xn].

{(a1, ..., an) ∈ Zn | ∃b1 · · · bm f(a1, ..., an, b1, ..., bm) = 0} is r.e.
for any f(x1, ..., xn, y1, ..., ym) ∈ Z[x1, ..., xn, y1, ..., ym]. Such a
set is also called Diophantine.

Theorem (Matiyasevich–Robinson–Davis–Putnam)

Every r.e. set is Diophantine.

Corollary (Hilbert’s tenth problem)

There does not exist general algorithm that decides whether a
polynomial has integer solution.

12 / 27

More computability

{(a1, ..., an) ∈ Zn | f(a1, ..., an) = 0} is recursive for any
f(x1, ..., xn) ∈ Z[x1, ..., xn].

{(a1, ..., an) ∈ Zn | ∃b1 · · · bm f(a1, ..., an, b1, ..., bm) = 0} is r.e.
for any f(x1, ..., xn, y1, ..., ym) ∈ Z[x1, ..., xn, y1, ..., ym]. Such a
set is also called Diophantine.

Theorem (Matiyasevich–Robinson–Davis–Putnam)

Every r.e. set is Diophantine.

Corollary (Hilbert’s tenth problem)

There does not exist general algorithm that decides whether a
polynomial has integer solution.

12 / 27

More computability

{(a1, ..., an) ∈ Zn | f(a1, ..., an) = 0} is recursive for any
f(x1, ..., xn) ∈ Z[x1, ..., xn].

{(a1, ..., an) ∈ Zn | ∃b1 · · · bm f(a1, ..., an, b1, ..., bm) = 0} is r.e.
for any f(x1, ..., xn, y1, ..., ym) ∈ Z[x1, ..., xn, y1, ..., ym]. Such a
set is also called Diophantine.

Theorem (Matiyasevich–Robinson–Davis–Putnam)

Every r.e. set is Diophantine.

Corollary (Hilbert’s tenth problem)

There does not exist general algorithm that decides whether a
polynomial has integer solution.

12 / 27

HNN extension

Suppose G has presentation 〈A | R〉, H,H ′ are subgroups of G
and φ : H → H ′ is an isomorphism.

Definition 5

G∗ := 〈A ∪ {t} | R ∪ {t−1ht = φ(h) | h ∈ H}〉 is the HNN
extension by the stable letter t with respect to φ. We also write
〈G, t | t−1ht = φ(h), h ∈ H〉.

More generally we may consider a collection of isomorphisms
φi : Hi → H ′i and stable letters ti.

Theorem 6

1. The natural map from G to G∗ is injective.
2. (Britton’s lemma) If the sequence g0t

ε1g1 · · · tεngn represents
identity in G∗, where gk ∈ G, εk = ±1 and n ≥ 1, then there is an
appearance of t−1ht, h ∈ H or th′t−1, h′ ∈ H ′.

13 / 27

HNN extension

Suppose G has presentation 〈A | R〉, H,H ′ are subgroups of G
and φ : H → H ′ is an isomorphism.

Definition 5

G∗ := 〈A ∪ {t} | R ∪ {t−1ht = φ(h) | h ∈ H}〉 is the HNN
extension by the stable letter t with respect to φ. We also write
〈G, t | t−1ht = φ(h), h ∈ H〉.

More generally we may consider a collection of isomorphisms
φi : Hi → H ′i and stable letters ti.

Theorem 6

1. The natural map from G to G∗ is injective.
2. (Britton’s lemma) If the sequence g0t

ε1g1 · · · tεngn represents
identity in G∗, where gk ∈ G, εk = ±1 and n ≥ 1, then there is an
appearance of t−1ht, h ∈ H or th′t−1, h′ ∈ H ′.

13 / 27

HNN extension

Consequences:

1. G∗ is a supergroup of G where H,H ′ are conjugate.

2. If G has decidable word problem then so does G∗.

Example:

H = H ′ and φ is identity, so G∗ = 〈G, t | t−1ht = h, h ∈ H〉. We
claim that for g ∈ G, t−1gt = g iff g ∈ H. Indeed, if g /∈ H then
t−1gtg−1 contains no appearance of t−1ht or tht−1.

14 / 27

HNN extension

Consequences:

1. G∗ is a supergroup of G where H,H ′ are conjugate.

2. If G has decidable word problem then so does G∗.

Example:

H = H ′ and φ is identity, so G∗ = 〈G, t | t−1ht = h, h ∈ H〉. We
claim that for g ∈ G, t−1gt = g iff g ∈ H. Indeed, if g /∈ H then
t−1gtg−1 contains no appearance of t−1ht or tht−1.

14 / 27

Benign subgroup

Call a f.g. group G Higman if it can be embedded in a f.p. group.

Definition 7

A subgroup H of a f.g. group G is called benign in G if the group
GH := {G, t | t−1ht = h, h ∈ H} is Higman.

Note that H is not assumed to be f.g.

Facts:

1. If G is f.p., then any f.g. subgroup H is benign. More generally
this is true for G Higman: if G ⊆ L where L is f.p. then
GH ⊆ LH .

2. If we have H ⊆ G ⊆ L where G,L are f.g., and H is benign in
L, then H is benign in G, since GH ⊆ LH .

3. If H,K ⊆ G are benign then so are H ∩K and Gp{H,K}.

15 / 27

Benign subgroup

Call a f.g. group G Higman if it can be embedded in a f.p. group.

Definition 7

A subgroup H of a f.g. group G is called benign in G if the group
GH := {G, t | t−1ht = h, h ∈ H} is Higman.

Note that H is not assumed to be f.g.

Facts:

1. If G is f.p., then any f.g. subgroup H is benign. More generally
this is true for G Higman: if G ⊆ L where L is f.p. then
GH ⊆ LH .

2. If we have H ⊆ G ⊆ L where G,L are f.g., and H is benign in
L, then H is benign in G, since GH ⊆ LH .

3. If H,K ⊆ G are benign then so are H ∩K and Gp{H,K}.

15 / 27

Benign subgroup

Theorem (Higman’s Embedding Theorem)

A f.g. group is Higman iff it has a recursive presentation 〈A | R〉.

One direction is simple: Suppose G = 〈A | R〉 is embedded in a
f.p. group 〈A′ | R′〉; wlog assume A ⊆ A′. Then
〈R〉F (A) = 〈R′〉F (A′) ∩A is r.e.

Granted Higman’s theorem, H ⊆ G is benign roughly means H is
a recursive subset of G. Higman’s theorem easily implies
undecidability of word problem.

16 / 27

The principal lemma

Lemma 8

Let S ⊆ Z be recursively enumerable. Then the subgroup
Gp{azbcz | z ∈ S} is benign in the free group 〈a, b, c〉.

Fact: Gp{azbcz | z ∈ Z} is freely generated by the indicated
generators.

17 / 27

The principal lemma

Lemma 8

Let S ⊆ Z be recursively enumerable. Then the subgroup
Gp{azbcz | z ∈ S} is benign in the free group 〈a, b, c〉.

Fact: Gp{azbcz | z ∈ Z} is freely generated by the indicated
generators.

17 / 27

Proof of undecidability assuming the principal lemma.

Note that if G ⊆ L are both f.g. and the word problem for L is
decidable, then the same holds for G.

Let S be a r.e. set that is not recursive. Let G = 〈a, b, c〉 and
B = Gp{azbcz | z ∈ S}. GB = 〈a, b, c, t | t−1azbczt = azbcz〉 can
be embedded into a f.p. group L by the principal lemma.
t−1azbczt = azbcz iff azbcz ∈ B, and this happens iff z ∈ S by
freeness.

If there were an algorithm that solves the word problem of GB, we
could use it to determine whether a given integer z is in S.
Therefore GB’s word problem is undecidable, and so is L.

18 / 27

Step 1: elementary formulas

By MRDP Theorem, we may assume S is Diophantine, so there is
some polynomial f(z0, z1, ..., zt) with integer coefficients s.t.

z0 ∈ S ⇔ ∃z1 · · · zt f(z0, z1, ..., zt) = 0

We can convert this to

z0 ∈ S ⇔ ∃z1 · · · zmφ(z0, z1, ..., zm)

where φ =
∧
p φp is the conjunction of some elementary formulas

of one of the forms

zi = c (c an integer)

zi = zj

zi + zj = zk (i, j, k distinct)

zl = zi · zj (0 < l < i < j ≤ m)

19 / 27

Step 1: elementary formulas

By MRDP Theorem, we may assume S is Diophantine, so there is
some polynomial f(z0, z1, ..., zt) with integer coefficients s.t.

z0 ∈ S ⇔ ∃z1 · · · zt f(z0, z1, ..., zt) = 0

We can convert this to

z0 ∈ S ⇔ ∃z1 · · · zmφ(z0, z1, ..., zm)

where φ =
∧
p φp is the conjunction of some elementary formulas

of one of the forms

zi = c (c an integer)

zi = zj

zi + zj = zk (i, j, k distinct)

zl = zi · zj (0 < l < i < j ≤ m)

19 / 27

Step 1: elementary formulas

Example:

∃z1 z20 + z1 + 1 = 0

⇔∃z1∃z2 (z2 = z20) ∧ (z2 + z1 + 1 = 0)

⇔∃z1∃z2∃z3 (z2 = z20) ∧ (z3 = z2 + z1) ∧ (z3 = −1)
⇔∃z1∃z2∃z3∃z4∃z5 (z2 = z4 · z5) ∧ (z4 = z0) ∧ (z5 = z0)

∧ (z3 = z2 + z1) ∧ (z3 = −1)

20 / 27

Step 2: reducing to elementary formulas

Goal: Let S = {z0 | ∃z1 · · · zmφ(z0, z1, ..., zm)}. Then the
subgroup B = Gp{az00 b0c

z0
0 | z0 ∈ S} is benign in the free group

〈a0, b0, c0〉.

Let F = 〈a0, b0, c0, ..., am, bm, cm〉. For each tuple
(z0, ..., zm) ∈ Zm+1, define w(z0,...,zm) as follows:

c−zmm b−1m a−zmm · · · c−z11 b−11 a−z11 az00 b0c
z0
0 a

z1
1 b1c

z1
1 · · · azmm bmc

zm
m

Fact: {w(z0,...,zm) | (z0, ..., zm) ∈ Zm+1} freely generate a
subgroup A ⊆ F .

21 / 27

Step 2: reducing to elementary formulas

Goal: Let S = {z0 | ∃z1 · · · zmφ(z0, z1, ..., zm)}. Then the
subgroup B = Gp{az00 b0c

z0
0 | z0 ∈ S} is benign in the free group

〈a0, b0, c0〉.

Let F = 〈a0, b0, c0, ..., am, bm, cm〉. For each tuple
(z0, ..., zm) ∈ Zm+1, define w(z0,...,zm) as follows:

c−zmm b−1m a−zmm · · · c−z11 b−11 a−z11 az00 b0c
z0
0 a

z1
1 b1c

z1
1 · · · azmm bmc

zm
m

Fact: {w(z0,...,zm) | (z0, ..., zm) ∈ Zm+1} freely generate a
subgroup A ⊆ F .

21 / 27

Step 2: reducing to elementary formulas

Let Aφ = Gp{w(z0,...,zm) | φ(z0, ..., zm) is true};

Aci = Gp{w(z0,...,zm) | zi = c};

A=
i,j = Gp{w(z0,...,zm) | zi = zj}, etc.

Notice that F (X) ∩ F (Y) = F (X ∩ Y). So Aφ is the intersection
of all the Aci , A

=
i,j , etc.

Recall that B = Gp{az00 b0c
z0
0 | z0 ∈ S}.

Gp{Aφ, a1, b1, c1, ..., am, bm, cm} ∩ {a0, b0, c0}
=Gp{B, a1, b1, c1, ..., am, bm, cm} ∩ {a0, b0, c0}
=B

22 / 27

Step 2: reducing to elementary formulas

Let Aφ = Gp{w(z0,...,zm) | φ(z0, ..., zm) is true};

Aci = Gp{w(z0,...,zm) | zi = c};

A=
i,j = Gp{w(z0,...,zm) | zi = zj}, etc.

Notice that F (X) ∩ F (Y) = F (X ∩ Y). So Aφ is the intersection
of all the Aci , A

=
i,j , etc.

Recall that B = Gp{az00 b0c
z0
0 | z0 ∈ S}.

Gp{Aφ, a1, b1, c1, ..., am, bm, cm} ∩ {a0, b0, c0}
=Gp{B, a1, b1, c1, ..., am, bm, cm} ∩ {a0, b0, c0}
=B

22 / 27

Step 3: the HNN extension

As an example we show that Aci = Gp{w(z0,...,zm) | zi = c} is
benign in F = 〈a0, b0, c0, ..., am, bm, cm〉. It suffices to construct a
f.p. group M ⊇ F and a f.g. L ⊆M s.t. L ∩ F = Aci .

For each i, {a0, b0, c0, ..., ai, aibici, ci, ..., am, bm, cm} freely
generate F . Let M be the HNN extension of F by stable letters
ti, 0 ≤ i ≤ m defined by

t−1i biti = aibici, and

ti commutes with all other generators of F .

23 / 27

Step 3: the HNN extension

As an example we show that Aci = Gp{w(z0,...,zm) | zi = c} is
benign in F = 〈a0, b0, c0, ..., am, bm, cm〉. It suffices to construct a
f.p. group M ⊇ F and a f.g. L ⊆M s.t. L ∩ F = Aci .

For each i, {a0, b0, c0, ..., ai, aibici, ci, ..., am, bm, cm} freely
generate F . Let M be the HNN extension of F by stable letters
ti, 0 ≤ i ≤ m defined by

t−1i biti = aibici, and

ti commutes with all other generators of F .

23 / 27

Step 4: finishing the proof

Recall the definition of w(z0,...,zm):

c−zmm b−1m a−zmm · · · c−z11 b−11 a−z11 az00 b0c
z0
0 a

z1
1 b1c

z1
1 · · · azmm bmc

zm
m

Note that t−1i w(z0,...,zm)ti = w(z0,...,zi+1,...,zm).

So for each fixed i, L := Gp{Aci , tj , j 6= i} is generated by
w(0,...,c,...,0) and tj , j 6= i.

L ∩ F = Aci by Britton’s Lemma.

24 / 27

Step 4: finishing the proof

Recall the definition of w(z0,...,zm):

c−zmm b−1m a−zmm · · · c−z11 b−11 a−z11 az00 b0c
z0
0 a

z1
1 b1c

z1
1 · · · azmm bmc

zm
m

Note that t−1i w(z0,...,zm)ti = w(z0,...,zi+1,...,zm).

So for each fixed i, L := Gp{Aci , tj , j 6= i} is generated by
w(0,...,c,...,0) and tj , j 6= i.

L ∩ F = Aci by Britton’s Lemma.

24 / 27

Adian-Rabin Theorem

Theorem 9

If P is any property about finitely presented groups that is Markov,
then there does not exist an algorithm that decides whether a f.p.
group has P from its presentation. P is Markov if:
1. There is a f.p. group G1 with P ;
2. There is a f.p. group G2 which cannot be embedded into any
f.p. group with P .

Examples of Markov properties: being trivial, finite, free, abelian,
torsion-free, simple, amenable, hyperbolic, property (T), etc.

25 / 27

Adian-Rabin Theorem

Theorem 9

If P is any property about finitely presented groups that is Markov,
then there does not exist an algorithm that decides whether a f.p.
group has P from its presentation. P is Markov if:
1. There is a f.p. group G1 with P ;
2. There is a f.p. group G2 which cannot be embedded into any
f.p. group with P .

Examples of Markov properties: being trivial, finite, free, abelian,
torsion-free, simple, amenable, hyperbolic, property (T), etc.

25 / 27

Adian-Rabin Theorem

Proof idea: Let H be a f.p. group with undecidable word problem.
Using HNN extension and free product with amalgamation, assign
to each word w on the generators of H a presentation Dw in a
computable way, so that Dw contains G2 when w 6= 1 and Dw is
trivial when w = 1. Then Dw ∗G1 has property P iff w = 1 in H.

This “reduces” the word problem for H to the problem of deciding
whether a f.p. group has property P . Since the former is
undecidable, so is the latter.

26 / 27

Reference

N. Koblitz, B. Zilber, and Y.I. Manin.
A Course in Mathematical Logic for Mathematicians.
Graduate Texts in Mathematics. Springer New York, 2009.

R.C. Lyndon and P.E. Schupp.
Combinatorial Group Theory.
Classics in Mathematics. Springer Berlin Heidelberg, 2015.

27 / 27

